名大理系数学講義資料

この講義で扱う問題は全て名古屋大学の過去問です。必ず予習をしてから動画を見てください！！！！

【1】（2005年名古屋大）
（1）連続関数$f(x)$が、すべての実数xについて$f(x) = f(x)$をみたすとき、$\int_0^\pi (x-\frac{\pi}{2}) f(x) dx = 0$が成り立つことを証明せよ。
（2）$\int_0^\pi x \sin^3 x \frac{dx}{4-\cos^3 x}$を求めよ。

【2】（2008年名古屋大）
曲線$C: y = \log x$上の点$P(a, \log a)$、点$Q(b, \log b)$（$1 < a < b$）をとる。点P, Qからx軸に下ろした2本の垂線とx軸および曲線Cで囲まれた部分の面積をSとする。点P, Qからy軸に下ろした2本の垂線とy軸および曲線Cで囲まれた部分の面積をTとする。このとき、$S = T$となるようにbをとれるaの値の範囲を求めよ。

【3】（1998年名古屋大）
Nを自然数とし、複素数$z = \cos \theta + i \sin \theta$を満たすとして、以下の級数和$S_1, S_2, S_3$の値を求めよ。ただし、ここで$i$は虚数単位($i^2 = -1$)である。
（1）$S_1 = 1 + z + z^2 + \cdots + z^{N-1}$
（2）$S_2 = 1 + \cos \theta + \cos 2\theta + \cdots + \cos (N-1)\theta$
（3）$S_3 = 1 + \cos^2 \theta + \cos^2 2\theta + \cdots + \cos^2 (N-1)\theta$

【4】（2002年名古屋大）
次の問いに答えよ。ただし、偏角θは、$0^\circ \leq \theta < 360^\circ$の範囲で考えるものとする。
（1）$|z+i| = |z-i|$を満たす複素数zは、実数に限ることを示せ。
（2）複素数平面上でzが実軸上を動くとき、複素数$z+i$の偏角 arg$(z+i)$の動く範囲を求めよ。
（3）zを未知数とする方程式$(z+i)^5 = (z-i)^5$のすべての解zについて$z+i$の偏角 arg$(z+i)$を求めよ。
【5】（2012年名古屋大）
m, p を3以上の奇数とし, mはpで割り切れないとする。
(1) (x-1)^10の展開式におけるx^2の項の係数を求めよ。
(2) (p-1)^n + 1はpで割り切ることを示せ。
(3) (p-1)^n + 1はp^2で割り切れないことを示せ。
(4) rを正の整数とし, s=3r-1とする, 2^r+1は3で割り切れる
ことを示せ。

【6】（2012年名古屋大）
nを2以上の整数とする. 1からnまでの整数が1つずつ書かれ
れているn枚のカードがある. ただし, 異なるカードには異なる整
数が書かれているものとする. このn枚のカードから, 1枚のカー
ドを無作為に取り出して, 書かれた整数を調べてからもに戻る.
この試行を3回繰り返し, 取り出したカードに書かれた整数の最
小値をX, 最大値をYとする. 次の問いに答えよ. ただし, jとk
は正の整数で, j+k≤nを満たすとする. またsはn-1以下の正の整
数とする。
(1) X≤jかつY≤j+kとなる確率を求めよ。
(2) X=jかつY=j+kとなる確率を求めよ。
(3) Y-X=sとなる確率をP(s)とする. P(s)を求めよ。
(4) nが偶数のとき, P(s)を最大にするsを求めよ。

【7】（2010年名古屋大）
はじめに, Aが赤玉を1個, Bが白玉を1個, Cが青玉を1個
持っている. 表裏の出る確率がそれぞれ1/2の硬貨を投げ, 表が出
ればAとBの玉を交換し, 裏が出ればBとCの玉を交換する, と
いう操作を考える. この操作をn回 (n=1, 2, 3, ...) くり返した後
にA, B, Cが赤玉を持っている確率をそれぞれ a_n, b_n, c_n とお
く。
(1) a_1, b_1, c_1, a_2, b_2, c_2 を求めよ。
(2) a_{n+1}, b_{n+1}, c_{n+1} を a_n, b_n, c_n で表せ。
(3) a_n, b_n, c_n を求めよ。
【8】（2009年名古屋大）
\(x, y\) を正の整数とする。
(1) \(2 + \frac{1}{x} \leq \frac{1}{4}\)を満たす組 \((x, y)\) をすべて求めよ。
(2) \(p\) を 3 以上の素数とする。\(2 + \frac{1}{x} \leq \frac{1}{p}\)を満たす組 \((x, y)\) のうち、2\(x+3y\)を最小にする \((x, y)\) を求めよ。

【9】（2007年名古屋大）
原点 \(O\left(0, 0\right)\) を中心とする半径 1 の円に、円外の点 \(P \left(x_0, y_0\right)\) から 2 本の接線を引く。
(1) 2 つの接点の中点を \(Q\) とするとき、点 \(Q\) の座標 \(Q \left(x_1, y_1\right)\)を
点 \(P\) の座標 \(P \left(x_0, y_0\right)\) を用いて表わせ。また \(OP \cdot OQ = 1\) であることを示せ。
(2) 点 \(P\) が直線 \(x + y = 2\) 上を動くとき、点 \(Q\) の軌跡を求めよ。

【10】（2001年名古屋大）
\(\triangle ABC\) の外心（外接円の中心） \(O\) が三角形の内部にあるとし、
\(a, b, \gamma\) は \(a\overrightarrow{OA} + b\overrightarrow{OB} + \gamma\overrightarrow{OC} = \overrightarrow{0}\) を満たす正数であるとする。また、
直線 \(OA, OB, OC\) がそれぞれ辺 \(BC, CA, AB\) と交わる点を
\(A', B', C'\) とする。
(1) \(\overrightarrow{OA}, \alpha, \beta, \gamma\) を用いて \(\overrightarrow{OA'}\) を表せ。
(2) \(\triangle A'B'C'\) の外心が \(O\) に一致すれば \(\alpha = \beta = \gamma\) であることを示せ。

【11】（2003年名古屋大）
(1) 平行四辺形 \(ABCD\) において、\(AB = CD = a, BC = AD = b, BD = c, AC = d\) とする。このとき、\(a^2 + b^2 = \frac{1}{2} \left(c^2 + d^2\right)\)が成り立つことを証明せよ。
(2) 3 つの正数 \(a, b, c\) \(0 < a \leq b \leq c\) が \(a^2 + b^2 > c^2\)を満たすとき、
各面の三角形の長さを \(a, b, c\) とする四面体が作れることを証明せよ。
【1 2】（2005年名古屋大）

辺の長さが1の正四面体OABCを考え、\(\overrightarrow{OA} = \vec{a}, \overrightarrow{OB} = \vec{b}, \overrightarrow{OC} = \vec{c} \)とする。動点PはOからAへ辺OA上を秒速1で、動点QはAからBへ辺AB上を秒速\(\frac{1}{2} \)で、動点RはBからCへ辺BC上を秒速1で、動点SはCからOへ辺CO上を秒速\(\frac{1}{2} \)で、同時に動き出す。

（1）動き出してからt秒後（0 ≤ t ≤ 1）のベクトル
\(\overrightarrow{OP}, \overrightarrow{OQ}, \overrightarrow{OR}, \overrightarrow{OS} \)を\(\vec{a}, \vec{b}, \vec{c} \)およびtを用いて表せ。

（2）線分PRと線分QSが交点Mをもつときのt（0 ≤ t ≤ 1）の値を求め、ベクトル\(\overrightarrow{OM} \)を\(\vec{a}, \vec{b}, \vec{c} \)を用いて表せ。

【1 3】（2014年名古屋大）

空間内にある半径1の球（内部を含む）をBとする。直線lとBが交わっており、その交わりは長さ\(\sqrt{3} \)の線分である。

（1）Bの中心とlとの距離を求めよ。
（2）lのまわりにBを1回転してできる立体の体積を求めよ。